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In many gasdynamic phenomena one must analyze the behavior of shock waves (SW) with 
fronts concave in the direction of propagation. The propagation of such SW is accompanied 
by an increase in their intensity, the maximum of which is reached in the region defined as 
the focusing zone. In the case of weak SW, the Mach number of which is Mw = 1.0, the sim- 
plest description of the dynamics of fronts concave in the direction of propagation can be 
made on the basis of geometrical acoustics [i]. In accordance with geometrical acoustics, 
SW emerge from the geometrical focus in the form of intersecting "loop-shaped" fronts. A 
feature of geometrical acoustics is that it does not allow for nonlinearity in the velocity 
of propagation of the wave fronts as the SW strengthen in the process of focusing, and it 
predicts an unlimited increase in SW intensity at the envelopes of acoustic rays (caustics). 
The theory of [2] gives a qualitatively different picture of the dynamics for SW of moderate 
intensity. The strengthening of SW sections concave in the direction of propagation and the 
weakening of convex sections result in the fact that different sections of the SW front prop- 
agate at different velocities. Straightening of the SW front occurs, the trajectories of 
motion of elements of the front become curved and do not intersect, and the SW intensity re- 
mains finite. 

Experimental investigations of the dynamics of SW with fronts concave in the direction 
of propagation [3] made it possible to distinguish the main types of SW configurations in 
the focusing zone. On the basis of an analysis of straight-shadow photographs of the struc- 
ture of gas flow behind the SW and measurement of the pressure in the field behind the SW 
front, it was concluded that the limitation of the intensity of such SW during focusing is 
accomplished through the decrease in pressure in rarefaction waves propagating along the front 
of the focusing SW. The focusing of weak SW was studied analytically in [4]. The problem 
was reduced to the solution of the wave equation in a specially deformed coordinate system. 
It was concluded that the reason for the limitation of the intensity growth of focusing SW 
is the refraction of the SW. A defect of the work is the strong restriction imposed on the 
shape of the SW fronts. 

In the present work the dynamics of shock waves was investigated numerically on the ex- 
ample of two problems of the propagation of SW with concave fronts in an unbounded space and 
in a channel with rigid walls. As the initial system we took a system of two-dimensional, 
nonsteady equations of gasdynamics describing the motion of an inviscid and thermally non- 
conducting gas in regions of space where the parameters of the gas are continuous: 

Here 
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t is time; x and y, orthogonal coordinates; p, gas density; u and v, components of the gas 
velocity along x and y, respectively; p, gas pressure; e 0 = pe + p(u 2 + v2)/2, total energy 
of the gas. The system of equations was closed by the equation of state of a polytropic gas, 
e = P/[(7 - l)p] (7 is the adiabatic index of the gas, taken as 1.4 in the calculations). 
The parameter v took values of 0 and i, which correspond to plane and axial symmetry. The 
system of equations was solved in the moving region D, traveling in the space xOy (Fig. i). 
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The configuration of the region with the elapse of time was determined by the motion of the 
boundaries. The following were assigned as the boundaries of the calculation region: the 
SW front FI; the axis (plane) of symmetry Fs; a boundary F 2 in the gas stream, displaced suf- 
ficiently far from F 3 (Fig. la), or the rigid wall of the pipe (channel) (Fig. ib); the mov- 
ing surface r 4 behind the trailing shock (Fig. la) or a certain surface traveling behind F l 
[Fig. ib, where A is the focusing section of the shock wave Fz, B is the diffracted SW, and 
$I is the front of the rarefaction flow propagating from the wall toward the axis (plane) 
of symmetry]. All the parameters of the gas in the region D were determined at the initial 
time. For the flow geometry shown in Fig. la, the pressure at the SW is constant along F 1 
and the profile of the rarefaction wave is linear along the normal to r z. In the case shown 
in Fig. ib it was assumed that F I at the initial time is a spherical (cylindrical) diaphragm 
separating two states of a stationary gas. Here it was assumed that the gas pressure behind 
the diaphragm r I is higher than the pressure ahead of it and the gas temperature is the same 
everywhere. The gas parameters ahead of the SW front were assigned as constants. 

Following the instantaneous removal of the diaphragm, a shock wave F l with a curved front 
propagates through the gas to the right. It was required that the conditions of a shock transi- 
tion be satisfied at F I , the condition of symmetry of the gas stream relative to F s was set 
up at this boundary, the condition of nonpenetration at the solid wall, and the condition 
8@/8n = 0 (~ is any parameter of the gas and n is the outward normal to the boundary r=) at 
the boundary F 2 (Fig. la). The same condition was set up at F 4 for the first problem, while 
for the second problem (Fig. ib) it was required that the normal velocity of travel of F 4 be 
no lower than the velocity of propagation of local disturbances in the gas stream ahead of 
F4, which enabled us to assign the gas parameters at F~ which were calculated in the stream 

ahead of F4. 
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The numerical algorithm for solving the stated problems is based on an explicit differ- 
ence scheme 115] in a moving difference grid, connected with the shock wave front F I explicit- 

ly isolated in the process of calculation. The calculation algorithm is described in [6], 
while the results of parametric research are contained in [7]. In the calculations of flows 
in pipes (channels) (Fig. ib) we used nonuniform difference grids, adjusted to the flow struc- 

ture and providing an acceptable calculation accuracy [8]. 

As experimental [3] and numerical research [7] showed, the main parameters determining 
the behavior of the SW intensity in the focus zone are the angle of convergence s 0 of the 
SW (see Fig. i) and its initial relative intensity Ap0/p0 (P0 is the pressure in the gas ahead 
of r I and Ap0 is the initial amplitude of the excess pressure at the SW). 

The presence of a point of discontinuity of the curvature of the front (a) or of a rigid 
wall in the gas stream (b) at the initial SW leads to the formation of disturbances propagat- 
ing along the front F I. The experimental results of [3] point to a direct dependence of the 
process of focusing of the SW on the flow structure behind it. Therefore, a number of cal- 
culations were made in order to clarify the properties of gas flow behind a focusing SW. In 
Fig. 2 we present fragments of the flow behind the SW near the pipe wall for the initial param- 
eters Ap0/p0 = 0.i and s 0 = 30~ the positions of FI are shown for the values x/Rf = 0.3 and 
0.42 (a, b), where Rf is the focal length (see Fig. i) and Yw is the coordinate of the wall. 
The pressure profiles behind F l in the Ox direction are given. The position of the front 
S I of the rarefaction wave propagating from the wall toward the axis of symmetry is given 
for x/Rf = 0.3. The reason for the appearance of rarefaction flow is the diffraction of F l on 
the wall, as a result of which the SW becomes convex in the direction of propagation near 
the wall. The pressure profiles indicate the formation of a compression wave C l propagating 
behind F I. The appearance of the compression wave is explained by the reflection of the rare- 
faction wave from the SW r I. The rarefaction and compression waves behind the front F l play 
a pronounced role in equalizing the pressure along F I. The SW intensity is decreased by the 
rarefaction waves, but the intensity of F I increases in the wall region because of compression 
waves overtaking the SW. 

A discontinuity in the curvature of the initial front also leads to the formation of 
~:arefaction flow along the focusing section of the SW. 

For weak SW (Ap0 << P0) the nonlinearity of the focusing process is well traced in the 
numerical calculations. In Fig. 3 we present the amplification ratio k = Ap/Ap0 of the SW, 
the radius of curvature Rc of the front, and the acceleration W of the SW at the axis of sym- 
metry as functions of the distance traveled by the SW in the direction toward the geometrical 
focus (for the case shown in Fig. ib). The point x/Rf = 0 corresponds to the initial posi- 
tion of the SW while x/Rf = 1 corresponds to the geometrical focus; lines i) solution of geo- 
metrical acoustics; 2-5) numerical solutions obtained for s 0 = 8 ~ and Ap0/P0 = 0.i; s 0 = 12 ~ 

and Ap0/P0 = 0.i; s 0 = 16 ~ and Ap0/P0 = 0.i; and s 0 = 16 ~ and Ap0/P0 = 0.05, respectively. 

The behavior of curves 2-5 indicates that the processes of SW focusing for the given 
parameters s 0 and Ap0/p0 occur with the same character. It is seen from Fig. 3 that, start- 
ing with certain values of x/Rf, curves 2-5 diverge from lines 1 and W takes the maximum value 
]]ere. An analysis of the flow fields showed that at these times the front S l of the rarefac- 
tion flow reaches the axis of symmetry in propagating along the front F I. In the further 
propagation of the shock waves, the amplification ratio k reaches the maximum value, while 
W = 0. Thus, the entire focusing process can be divided into a number of successive stages. 
The first stage begins at the initial time and ends when Sl reaches the axis of symmetry while 
the shock wave F l has not yet arrived at the geometrical focus, which is a consequence of 
the nonlinearity in the propagation of disturbances behind the front of a focusing shock. 
The coincidence of curves 2-5 with lines 1 (see Fig. 3a, b) in this stage indicates that the 
process of strengthening of the section of the shock wave F I lying between Sl and the axis 
of symmetry takes place in accordance with geometrical acoustics. From the time of arrival 
of S I at the axis of symmetry, the second stage begins, and it ends in the zone of the maximum 
value of the amplification ratio. The behavior of curves 2-5 in Fig. 3b indicates that from 
this time the radius of curvature Rc of the SW front at the axis of symmetry grows rapidly and 
becomes infinitely large, i.e., straightening of the SW front occurs and the wave becomes 
plane at the axis of symmetry. 

An analysis of the flow fields behind F I and of the distributions of ~(y) and Ap/p0 along 
the front F I showed that the formation of a Mach SW configuration occurs in this stage [~(y) 
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is the angle between the Oy axis and the tangent to the shock wave front FI]. From Fig. 3a 
it is seen that in the stage of formation of the Mach SW configuration, the SW intensity at 
the axis of symmetry continues to grow. Such behavior of the amplification ratio is ex- 
plained by the peculiarities of Mach reflection of SW under nonsteady conditions. The reflec- 
tion coefficient in a Mach SW configuration is determined by the angle of inclination and 
the intensity of the incident SW. In our case, an incident SW and a Mach stem can be dis- 
tinguished in the SW from the time of arrival of S I at the axis of symmetry. The disturbances 
propagating along the incident wave form the intensity distribution and the angle of inclina- 
tion ~(y) of the shock front, which in turn determines the coefficient of reflection of the 
SW at the axis of symmetry. 

Thus, there are two nonlinear processes occurring simultaneously. In the problems under 
consideration, there is a decrease in the intensity of the incident SW because of the lowering 
of pressure by rarefaction waves, while on the other hand the intensity of the Mach stem near 
the axis of symmetry grows because of the increase in the angle of inclination of the incident 
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shock. The proportion of these two processes determines the behavior of the amplification 
ratio k, which increases if the SW reflection coefficient grows faster than the intensity 
of the incident SW is lowered by the rarefaction waves. The results presented in Fig. 3 con- 
firm that the length of this stage of SW strengthening depends on the initial parameters of 
the problem (Ap0/P0 and s0). For example, a comparison of curves 2-4 shows that the length 
of the stage of SW strengthening during the formation of the Mach configuration can be pro- 
longed if the angle of convergence s 0 is reduced for a fixed value of Ap0/p0 or Ap0/p0 is 
reduced for a fixed s 0 (from a comparison of curves 4 and 5). 

Thus, from the results of numerical calculations it is concluded that in the second 
stage of the focusing process the SW intensity in the focal zone is determined by the struc- 
ture of the Mach reflection of the SW. As follows from the experimental data of [3], however, 
wave structures with regular interaction of the SW can develop behind the focusing zone, de- 
pending on the initial SW parameters. Such a variety of structures in the focusing zone and 
behind it is explained, as above, by the peculiarities of nonsteady reflection of SW from 
the axis of symmetry. In Fig. 4a-c we present diagrams of wave structures, constructed from 
the results of the calculations and the experiments of [3], with variation of the initial 
parameters of the focusing shock: line i) trajectory of the point of intersection of the 
shock wave front F l with the front of the disturbance S 1 propagating along FI; S 0) front of 
the disturbance after reflection from the axis of symmetry; 2) trajectory of the triple point; 
C o ) reflected shock wave; C) compression wave behind the reflected shock wave C o . Common 
to these diagrams is the formation of a Mach SW configuration at the time t z when the front 
S~ of the disturbance wave reaches the axis of symmetry; with the course of time, this reflec- 
tion pattern can be retained and developed (a), it can change into a scheme with regular re- 
flection of the shock wave Fz (b), or an intermediate wave structure can develop (c). 

The transition from Mach reflection to regular reflection and vice versa occurs at criti- 
cal angles of inclination of the incident shock, the value of which depends on the shock inten- 
sity Ap/p0. The values of the critical angles for the reflection of weak SW from a rigid wedge 
were determined experimentally and analytically in [9, I0]. In Fig. 4a'-c' the dependence 
of the critical angle ~* on Ap/p0 is represented schematically and the possible behavior of 
the angle of inclination and the intensity of the incident shock F z in the process of reflec- 
tion are shown for each of these schemes. Here the region of ~ < ~* corresponds to the region 
of existence of Mach reflection, while regular reflection occurs for ~ > ~*. The times tl, 
t~, and t 3 correspond to the positions of the shocks in the diagrams on the left. As already 
mentioned, in the process of focusing, the intensity and the angle of inclination of the in- 
cident shock vary under the action of disturbances propagating along the front of the shock 
F I. A Mach configuration of shocks is formed at the time tl, since the angle of incidence 
is close to zero, as is shown in Fig. 4. Subsequently, if the angle of incidence remains 
less than the critical value =*, a Mach SW configuration always exists, as in Fig. 4a. The 
applicability of the theory of shock dynamics of [2] for calculating the Mach reflection of 
SW of moderate intensity was confirmed experimentally in [ii]. Hence it follows that the 
focusing of SW of moderate intensity (Ap0 = P0) will also be described well by this theory. 

If the angle of inclination of the incident shock grows rapidly in the process of reflec- 
tion, which occurs for large angles of convergence, then the Mach configuration starts to 
degenerate into the regular scheme of reflection, which originates and develops from the time 
corresponding to ~ > ~* (Fig. 4b). 
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Finally, an intermediate wave structure, which has been detected experimentally [3], 
is also possible. Here the stage of regeneration of the Mach configuration into the regular 
configuration is not finished, since the curve of the dependence ~(Ap/p0) for the incident 
shock after the time t 2 returns to the region of existence of the Mach shock configuration 
(Fig. 4c). 

To illustrate the proposed schemes, in Fig. 5 we present fields of isobars behind the 
shock wave FI, constructed from the calculated results. In Fig. 5a we present a typical pat- 
tern of a Mach SW configuration (it corresponds to Fig. 4a, Ap0/p0 = 1.5, ~0 = 45~ [6]) de- 
veloping after the passage of the shock wave F I far behind the geometrical focus. The in- 
cident wave and the Mach wave are clearly distinguished (front Fz) , while the position of 
the reflected wave C o is defined by the bunching of the isolines of Ap/p0 = const. Figure 
5b corresponds to Fig. 4b with the initial parameters Ap0/P0 = 10 -2 and ~0 = 20~ The be- 
havior of the isolines of 102Ap/p0 = const enables one to determine the position of the re- 
flected wave C o in the pattern of regular reflection, the position of the shock C I formed 
behind F I as a result of the reflection of the rarefaction wave from the shock wave F l (see 
Fig. 2), and the compression wave C. The flow pattern is identified by dashed lines. 

We have examined the peculiarities of the behavior of the amplitude of focusing SW and 
the wave configurations in the focusing zone for the simplest cases of concave fronts with 
a constant initial curvature and intensity. In actual situations, the causes of the develop- 
ment of concave fronts can be quite varied (stream nonuniformity, refraction, reflection, 
nonsteadiness of propagation, etc.), but their dynamics in the process of focusing will con- 
tain those basic elements discussed above. 
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